commandlinefu.com is the place to record those command-line gems that you return to again and again.
Delete that bloated snippets file you've been using and share your personal repository with the world. That way others can gain from your CLI wisdom and you from theirs too. All commands can be commented on, discussed and voted up or down.
You can sign-in using OpenID credentials, or register a traditional username and password.
First-time OpenID users will be automatically assigned a username which can be changed after signing in.
Every new command is wrapped in a tweet and posted to Twitter. Following the stream is a great way of staying abreast of the latest commands. For the more discerning, there are Twitter accounts for commands that get a minimum of 3 and 10 votes - that way only the great commands get tweeted.
» http://twitter.com/commandlinefu
» http://twitter.com/commandlinefu3
» http://twitter.com/commandlinefu10
Use your favourite RSS aggregator to stay in touch with the latest commands. There are feeds mirroring the 3 Twitter streams as well as for virtually every other subset (users, tags, functions,…):
Subscribe to the feed for:
I am using .bat commands to execute Curl commands for Twitter API
Useful to quickly get back to the Windows root directory of the current drive from a sub-directory within that drive.
Works also without space between 'cd' and backslash: 'cd\' or 'cd \' have the same effect
Mass suspends all User accounts on a Cpanel server and inputs a RedirectMatch to the Rick Roll video. Learn more at rainbowblast com
EDIT: Trolling crap removed ;)
takes approx 6 secs on a Core 2 Duo @ 2GHz, and 15 secs on atom based netbooks!
uses monoid (a,b).(x,y)=(ax+bx+ay,ax+by) with identity (0,1), and recursion relations:
F(2n-1)=Fn*Fn+F(n-1)*F(n-1)
F(2n)=(Fn+2*F(n-1))*Fn
then apply fast exponentiation to (1,0)^n = (Fn,F(n-1))
.
Note that: (1,0)^-1=(1,-1) so (a,b).(1,0) = (a+b,a) and (a,b)/(1,0)=(a,b).(1,0)^-1=(b,a-b)
So we can also use a NAF representation to do the exponentiation,http://en.wikipedia.org/wiki/Non-adjacent_form , it's also very fast (about the same, depends on n):
time echo 'n=1000000;m=(n+1)/2;a=0;b=1;i=0;while(m>0){z=0;if(m%2)z=2-(m%4);m=(m-z)/2;e[i++]=z};while(i--){c=a*a;a=c+2*a*b;b=c+b*b;if(e[i]>0){t=a;a+=b;b=t};if(e[i]<0){t=a;a=b;b=t-b}};if(n%2)a*a+b*b;if(!n%2)a*(a+2*b)' | bc
Calculates nth Fibonacci number for all n>=0, (much faster than matrix power algorithm from http://everything2.com/title/Compute+Fibonacci+numbers+FAST%2521 )
n=70332 is the biggest value at http://bigprimes.net/archive/fibonacci/ (corresponds to n=70331 there), this calculates it in less than a second, even on a netbook.
UPDATE: Now even faster! Uses recurrence relation for F(2n), see http://en.wikipedia.org/wiki/Fibonacci_number#Matrix_form
n is now adjusted to match Fn at wikipedia, so bigprimes.net table is offset by 1.
UPDATE2: Probably fastest possible now ;), uses a simple monoid operation:
uses monoid (a,b).(x,y)=(ax+bx+ay,ax+by) with identity (0,1), and recursion relations:
F(2n-1)=Fn*Fn+F(n-1)*F(n-1)
F(2n)=Fn*(2*F(n-1)+Fn)
then apply fast exponentiation to (1,0)^n = (Fn,F(n-1))
.
Note that: (1,0)^-1=(1,-1) so (a,b).(1,0) = (a+b,a) and (a,b)/(1,0)=(a,b).(1,0)^-1=(b,a-b)
So we can also use a NAF representation to do the exponentiation,http://en.wikipedia.org/wiki/Non-adjacent_form , it's also very fast (about the same, depends on n):
time echo 'n=70332;m=(n+1)/2;a=0;b=1;i=0;while(m>0){z=0;if(m%2)z=2-(m%4);m=(m-z)/2;e[i++]=z};while(i--){c=a*a;a=c+2*a*b;b=c+b*b;if(e[i]>0){t=a;a+=b;b=t};if(e[i]<0){t=a;a=b;b=t-b}};if(n%2)a*a+b*b;if(!n%2)a*(a+2*b)' | bc
The end of unix time and the 32bit era will be Tue Jan 19 03:14:07 UTC 2038
.
date -ud @$[2**31]
date: invalid date `@2147483648'
.
In 64bit you have much longer, at least to:
date -ud @$[2**55]
Sun Jun 13 06:26:08 UTC 1141709097